상단배너
상단 배너 닫기
닫기
다양한 교육상품 할인정보를 놓치지 마세요!
교육상품 >
머신러닝 TensorFlow.js JavaScript [생각나눔]
머신러닝 TensorFlow.js JavaScript [생각나눔]
10%
32,000
추가 할인 무이자최대 12개월
남은시간 : 0 00:00:00 남음
l 104명 관심
머신러닝 TensorFlow.js JavaScript [생각나눔] / 28,800원 (잔여 : 999개)
28,800
총 상품금액 0
0명
필수!확인사항
상품정보
구매수량 : 1인당 999개까지 구매 가능
제품보증기간 : 구입일로부터 15일
상품/배송문의 북마우스 고객센터 ☎ 02-994-3937
평일 10:00~16:00
궁금하신 점이 있으실 경우, 상품문의에 글을 남겨주시면 최대한 빠르게 답변 드리도록 하겠습니다.
배송환불
배송 : 구매순 순차배송
배송비 : 2,200원 / 15,000원 이상 구매 시 무료배송
- 도서 산간의 경우 추가 배송료 발생
환불 : 단순변심 환불은 상품 수령 후 7 일 이내 가능
- 개봉/사용/훼손의 경우 환불 및 교환불가
- 왕복배송비(반품비)발생
* 주문량이 많아 2 ~ 3일 정도 늦게 출고가 될 수 있습니다.

자바스크립트와 TensorFlow.js 환경에서 머신러닝 구현
머신러닝에 필요한 수학식을 단계적으로 설명

이 책은 머신러닝 개념서가 아니다. 자바스크립트와 TensorFlow.js 환경에서 머신러닝 구현을 위한 책이다. 기초부터 하나씩 다져가면서 점진적으로 머신러닝을 구현하는 시나리오를 갖고 있다. 소스 코드 한 줄마다 목적과 기능이 상세하게 설명되어 있다. 책을 따라가면 어렵지 않게 머신러닝을 단계적으로 이해하게 된다. 어렵고 멀게만 느껴졌던 머신러닝을 내 것으로 만들 수 있다.

수학의 이해는 반드시 필요하지만, 머신러닝 구현에 필요한 범위가 있다. 이 책은 예제 코드를 통해 필요한 범위를 제시하며, 머신러닝 구현에 필요한 수학을 처음부터 단계적으로 다룬다. 머신러닝 구현에 필요한 수학 알고리즘을 TensorFlow.js에서 함수로 제공하므로 jQuery 함수를 호출하듯 TensorFlow.js 함수를 호출하면 된다. 이 범위의 수학 지식이 있으면 머신러닝을 구현할 수 있다.

저자: 김영보 저

1부 TensorFlow.js
1. 개요
1.1. TensorFlow.js 개요
1.1.1. TensorFlow.js란?
1.1.2. TensorFlow.js 목적, 방향성
1.2. 머신러닝, 딥러닝
1.2.1. 머신러닝
1.2.2. 추론
1.2.3. 딥러닝
1.3. Tensor와 Flow
1.4. 개발자 관점에서의 TensorFlow.js

2. Tensor 생성
2.1. 함수 작성 기준
2.2. Tensor 생성
2.3. Tensor 출력
2.4. 값 타입
2.5. TypedArray 오브젝트
2.6. scalar, rank, shape
2.7. scalar Tensor 생성
2.8. 1차원 Tensor 생성
2.9. 다차원 Tensor 생성

3. 함수, 식, 행렬
3.1. 변수, 상수, 계수
3.2. 독립변수, 종속변수
3.3. 함수
3.4. 1차식, 2차식
3.4.1. 항, 차수
3.4.2. 1차식
3.4.3. 2차식
3.5. 벡터
3.5.1. 벡터 덧셈, 뺄셈
3.5.2. 벡터 브로드캐스팅
3.5.3. 내적
3.5.4. 외적
3.6. 행렬
3.6.1. 행렬 덧셈, 뺄셈
3.6.2. 행렬 브로드캐스팅
3.6.3. 행렬 곱셈

4. Tensor 연산
4.1. 산술연산
4.1.1. 산술연산 함수 목록
4.1.2. tf.Tensor 값 더하기
4.1.3. 다수의 tf.Tensor 값 더하기
4.1.4. 누적 합산
4.2. 논리연산
4.2.1. 논리연산 함수 목록
4.2.2. 상태에 따라 값 반환
4.2.3. true인 인덱스 반환
4.3. 수열
4.3.1. 수열 개념
4.3.2. 등차수열
4.3.3. 등비수열
4.3.4. 항수로 등차수열 생성
4.3.5. 차이로 등차수열 생성
4.3.6. 시그마, 파이
4.4. 초깃값 설정
4.4.1. 초깃값 설정 함수 목록
4.4.2. 초깃값 설정 함수
4.5. 수학식 함수
4.5.1. 수학식 함수 목록
4.5.2. 최솟값과 최댓값 사이의 값

5. Tensor Class
5.1. 함수 목록
5.2. shape 변환
5.2.1. 벡터, 스칼라로 변환
5.2.2. 랭크 변환
5.2.3. 값 타입 변환
5.2.4. shape 변환
5.3. 동기, 비동기 처리
5.3.1. 동기 방법으로 텐서 값 추출
5.3.2. 비동기 방법으로 텐서 값 추출

6. Tensor 추출, 변환
6.1. 함수 목록
6.2. 추출
6.2.1. 인덱스로 추출
6.2.2. 범위로 추출
6.3. 결합
6.3.1. Tensor 연결
6.3.2. Tensor 스택
6.3.3. 반복 복제
6.3.4. 순서 변경
6.4. 분할
6.4.1. 1차원 낮추어 분할
6.4.2. 지정한 수로 분할
6.5. 변환
6.5.1. 값 타입 변환
6.5.2. rank 확장, 압축
6.5.3. 앞뒤에 엘리먼트 삽입
6.5.4. shape 변환
6.6. 논리 AND, OR 비교
6.7. 최댓값, 최솟값
6.7.1. 최댓값, 최솟값
6.7.2. 최댓값, 최솟값 인덱스
6.8. 평균, 합계, 곱하기
6.8.1. 평균, 합계
6.8.2. 행, 열 곱하기
6.9. 난수 생성
6.9.1. 균등 분포 난수
6.9.2. 정규분포 난수 127
6.10. 변수 생성, 값 변경

7. 메모리 관리
7.1. 함수 목록
7.2. 메모리 정보
7.3. 메모리 해제
7.4. 스코프 메모리 해제
7.5. 메모리 해제 방지

8. TensorFlow.js 모델링
8.1. 모델, 트레이닝
8.2. 데이터 세트
8.3. 지도 학습
8.4. TensorFlow.js 모델
8.4.1. 모델 학습 단계
8.4.2. 모델에서 사용할 데이터 정의
8.4.3. 모델의 변수 정의
8.4.4. 모델 정의
8.4.5. 모델 학습
8.4.6. 모델 테스트
8.4.7. 모델 평가, 튜닝, 테스트

2부 선형 회귀
9. 선형 회귀
9.1. 개요
9.1.1. 선형
9.1.2. 회귀
9.1.3. 분류
9.1.4. 선형 회귀 모델
9.2. 선형 회귀 모델 구성
9.2.1. 선형 회귀 모델 데이터
9.2.2. 선형 회귀 모델 가설
9.2.3. 학습 측정 기준
9.3. 두 점 사이 거리
9.3.1. L1 Norm
9.3.2. L2 Norm
9.3.3. norm() 함수
9.3.4. 잔차
9.3.5. 최소제곱법
9.4. 손실함수
9.4.1. 손실함수 목적
9.4.2. 평균 제곱 오차
9.4.3. 모델 코드 분석

10. 경사 하강법 Ⅰ
10.1. 개요
10.2. 미분 개요
10.2.1. 수렴, 극한
10.2.2. 기울기, 평균변화율
10.2.3. 미분계수, 순간변화율
10.2.4. 미분과 모델 학습
10.3. 경사 하강법 알고리즘 분석
10.3.1. 알고리즘 분석 시나리오
10.3.2. 손실함수 값 계산
10.3.3. 역전파
10.3.4. 기울기 계산
10.3.5. 가중치와 바이어스 계산
10.4. 학습률
10.4.1. 수렴
10.4.2. 발산

11. 경사 하강법 Ⅱ
11.1. 배치 경사 하강법
11.2. 배치 사이즈
11.3. 확률적 경사 하강법
11.4. 미니배치 경사 하강법
11.5. Iris 데이터 세트
11.5.1. 붓꽃 데이터 세트 형태
11.5.2. 배치 사이즈와 학습률
11.6. 선형 회귀 손실함수
11.6.1. L1 손실함수
11.6.2. L2 손실함수
11.6.3. Huber 손실함수
11.6.4. Pseudo-Huber 손실함수

12. 옵티마이저
12.1. 지역, 전역 최솟값
12.2. 옵티마이저 목적
12.3. 옵티마이저 식
12.4. Momentum
12.5. Nesterov
12.6. AdaGrad
12.7. AdaDelta
12.8. RMSProp
12.9. Adam
12.10. AdaMax

13. 다중·다항 회귀 모델
13.1. 보스턴 하우징 데이터 세트
13.2. 다중 회귀
13.2.1. 다중 회귀 특징
13.2.2. 다중 회귀 가설
13.2.3. 다중 회귀 손실함수
13.2.4. 다중 회귀 행렬 형태
13.2.5. 다중 회귀 모델
13.2.6. 다변량 선형 회귀
13.3. 다항 회귀
13.3.1. 다항 회귀 형태
13.3.2. 다항 회귀 모델
13.4. 오버피팅
13.5. 노이즈

14. 선형 회귀 정규화
14.1. 정규화 개요
14.2. Lasso 회귀
14.3. Ridge 회귀
14.4. Elastic Net

3부 분류
15. 로지스틱 회귀
15.1. 개요
15.2. sigmoid 함수
15.3. log 함수
15.4. 로지스틱 회귀 가설
15.5. 로지스틱 회귀 손실함수
15.6. 로지스틱 회귀 모델

16. 활성화 함수
16.1. 개요
16.2. hardSigmoid 함수
16.3. step 함수
16.4. ReLU 함수
16.5. LeakyReLU 함수
16.6. ReLU6 함수
16.7. softplus 함수
16.8. tanh 함수
16.9. softsign 함수
16.10. ELU 함수
16.11. SELU 함수

17. 소프트맥스 회귀
17.1. 개요
17.2. softmax 함수
17.3. One-Hot 인코딩
17.4. 소프트맥스 회귀 손실함수
17.5. 소프트맥스 예측 결과 분석

4부 이미지 인식
18. 이미지 인식
18.1. Node.js 환경 설정
18.2. MNIST 데이터 세트
18.3. MNIST 모델
18.4. MNIST 모델 코드 분석

부록
1. TensorFlow.js 설치
2. 그래프 작성 방법
Index

책의 출판 시점에 관련된 분야(TensorFlow.js)의 도서가 없었다. 저자는 공부하면서 관련 도서가 없어 힘들었던 경험을 후배들에게도 물려주고 싶지 않아 최초의 TensorFlow.js 분야 책을 집필했다.

저자는 개발자로서, 개발자를 가르치는 선생님으로서 항상 개발 현장에 있었다. 개발과 강의 경험을 통해 개발자가 필요로 하는 핵심을 정리해 이 책에 담았다.
『머신러닝 TensorFlow.js JavaScript』는 머신러닝에 대한 단계적이고 자세한 설명을 통해 따라 하기만 하면 지식이 축적되도록 구성했다. 또한, 방대한 수학 지식 중 웹 개발자가 이해해야 하는 범위를 알려주는 등 많은 개발자의 고민을 쉽게 해결할 수 있는 길도 알려준다.

머신러닝을 배우려는 분,
자바스크립트, Node.js 개발자,
파이썬+TensorFlow 환경과 자바스크립트+TensorFlow.js 환경을 통합하려는 분 등
누구든지 목표를 이루고자 하는 의지만 챙겨오라. 의지를 가지고 책이 이끄는 대로 따라가다 보면 어느새 머신러닝을 내 것으로 만든 당신을 발견할 수 있다.

『머신러닝 TensorFlow.js JavaScript』를 통해 새로운 기회를 선점하여 보다 더 많이 발전하시길 바란다.
서명
  • 상품에 대해 궁금한 점은 상품문의를 이용해주세요
  • 교환/환불 및 배송관련 문의는 고객센터 내 1:1 문의하기를 이용해주세요.
  • 상품문의를 통한  취소나 환불, 반품 등은  처리되지  않습니다.
  • 상품과 관계없는 글, 양도, 광고성, 욕설, 비방, 도배 등의 글은 예고없이 삭제됩니다.
상품 문의하기
옵션 선택
오늘특가
  • Loading...

에듀팡 로그인

반갑습니다.

회원님의 계정 상태가 휴면계정에서 정상계정으로 복구되었습니다.

에듀팡 이용에 앞서
회원정보수정 페이지에서 개인정보의 변동내역을 확인해 주세요.